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DISTRIBUTION AND ECOLOGY OF CATAPSYDRAX INDIANUS, A NEW PLANKTONIC
FORAMINIFER INDEX SPECIES FOR THE LATE OLIGOCENE-EARLY MIOCENE

SILVIA SPEZZAFERRI'“ AND PAUL N. PEARSON?

ABSTRACT

The Oligocene—-Miocene transition is characterized by a
low degree of biotic turnover (extinction plus origination) in
many microfossil groups and especially in planktonic
foraminifera. Few species appear, evolve, and disappear
across this boundary, and the existence of transitional forms
between key species makes biostratigraphic resolution of the
boundary interval difficult. The boundary is officially located
in the type section using magnetostratigraphic criteria, and
the first occurrence (FO) of the planktonic foraminifer
Paragloborotalia kugleri is the closest bioevent to the
boundary. The identification of supplementary bioevents is
therefore important to refine the biostratigraphic resolution
of this interval. We describe here a new species of planktonic
foraminifer, Catapsydrax indianus, the range of which
improves the biostratigraphic resolution across this problem-
atic boundary. In particular, the distribution of this species
spans an interval of approximately 5 million years across the
Oligocene—Miocene transition from just above the FO of
Paragloborotalia pseudokugleri (25.9 Ma) in the late Oligo-
cene Biochron P22 (= Biochron 06) to the FO of
Globigerinoides altiaperturus (20.5 Ma) in the early Mio-
cene.

The habitat of this new species is inferred from its oxygen
and carbon isotope values by comparison with the other
species in a multispecies isotope cross-plot. Our data show
that the deepest-dwelling of all the planktonic foraminifera
was the genus Catapsydrax, which has relatively positive 6'*0O
and negative 8"C values. Catapsydrax indianus has isotopic
ratios similar to those of the other species in the genus,
suggesting a similar habitat.

INTRODUCTION

The Oligocene—Miocene transition is a typical example of
an epoch boundary that does not correspond to any major
biological event. It is characterized instead by a low degree
of biotic turnover (extinction plus origination) in many
microfossil groups and especially within planktonic fora-
minifera (Spezzaferri, 1994, 1995). The low degree of biotic
turnover and the strong discrepancies in species distribu-
tions that have been reported in the literature have resulted
in the establishment of different zonations and compro-
mised reliable correlations at a global scale (Spezzaferri,
1995). Spezzaferri (1994, 1995) suggested that latitudinal
differences in the ranges of planktonic foraminifera can be
related to climatic instability during the Oligocene-Miocene
transition. In particular, lower Miocene Zone N4 (Fig. 1)
was characterized by brief and alternating cool and warm
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episodes during a time of generally cool conditions. Zachos
and others (2004) suggested that the Oligocene/Miocene
boundary was a time of significant climatic change
characterized by a brief but major Antarctic glaciation
(Flower and others, 1997).

Since the pioneering work of Bolli (1957) in Trinidad,
three species have been used to identify the Paleogene/
Neogene boundary, which equates to the Oligocene/
Miocene boundary: Globigerinoides primordius, Paraglobor-
otalia kugleri, and Globoquadrina dehiscens.

It is common practice for a standard event (first or last
occurrence [FO or LO] of the marker species) to be
associated with additional bioevents to better place the
boundary. Today, the FO of Globigerinoides primordius has
been discarded because it occurs in the late Oligocene, as
documented, for example, by Stainforth and others (1975),
Lamb and Stainforth (1976), Berggren and others (1985),
Taccarino (1985), Premoli Silva and Spezzaferri (1990),
Spezzaferri and Premoli Silva (1991), Spezzaferri (1994),
and Spezzaferri (1996). In addition, the FO of Gq. dehiscens
has also been discarded as a useful marker because of its
geographic diachrony (e.g., Jenkins and Orr, 1972; Jenkins,
1978; Premoli Silva and Spezzaferri, 1990; Spezzaferri,
1994). In addition, this species is often rare and discontin-
uous at the beginning of its range. When it is absent, it is
replaced by its presumed ancestor Globoquadrina praede-
hiscens, which is occasionally associated with forms
transitional to G. dehiscens s.s. (Premoli Silva and
Spezzaferri, 1990; Spezzaferri, 1994).

In 1997, the working group “In Search for the Paleogene/
Neogene Boundary” proposed to the International Com-
mission on Stratigraphy (ICS) that the boundary be placed
at the base of Magnetozone C6CN2n in the Lemme Section
in Piedmont, Northern Italy (Steininger and others, 1997).
When magnetostratigraphic data are missing, however, the
identification of this boundary is very difficult, and
additional bioevents should be considered. The FO of
Paragloborotalia kugleri is 2 m above the base of this
magnetozone, which makes it the most useful planktonic
foraminiferal marker to identify this boundary (Steininger
and others, 1997). Second-order bioevents (bioevents that
are not used to define zonal boundaries) provide more
detailed biostratigraphic control (e.g., Spezzaferri, 1994,
1996).

In this article, a new species of planktonic foraminifer,
Catapsydrax indianus, is described, and its FO and LO are
proposed as second-order bioevents useful in recognizing
the late Oligocene/early Miocene boundary.

MATERIAL AND METHODS

This study emanates from a larger micropaleontological
investigation aimed at identifying the planktonic biostra-
tigraphy and the paleoclimatic record across the Oligocene/
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FIGURE 1. Distribution of Catapsydrax indianus in the investigated sites. Oligocene zonation from Berggren and Pearson (2005, 2007) plotted
versus the zonation proposed in Spezzaferri (1994). Miocene zonation from Spezzaferri (1994). Ages with * are from Berggren and others (1995). Ages
with ** are from Wade and others (2007). The remaining ages are from Berggren and Pearson (2005, 2007).
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TABLE 1. Summary of the DSDP and ODP holes included in this study together with their latitude, longitude, water depth, studied cores, and
geographic locations.

SPEZZAFERRI AND PEARSON

Holes/outcrops Latitude Longitude Water depth (mbsf) Studied cores Location
DSDP-151 15°01.02'N 73°24.58'W 2,029 4t09 Gulf of Mexico

ODP-667A 04°34.15'N 21°54.68'W 3,529.5 35 to 26 Equatorial Atlantic Ocean
DSDP-17A 28°02.74'S 36°15'W 4,266 1to2 Western South Atlantic Ocean
DSDP-516F 30°16.59'S 35°17.10'W 1,313 1 to 20 Western South Atlantic Ocean
DSDP-360 35°50.75'S 18°05.79'E 2,949 23 to 30 Eastern South Atlantic Ocean
DSDP-363 19°38.75'S 09°02.80'E 2,248 1to5 Eastern South Atlantic Ocean
DSDP-526A 30°08.36'S 03°08.28'E 1,054 24 to 33 Eastern South Atlantic Ocean
ODP-709C 03°54.90'S 60°33.10'E 3,040.8 18 to 27 Equatorial Indian Ocean
ODP-709B 03°54.90'S 60°33.10'E 3,040.8 21 to 27 Equatorial Indian Ocean
ODP-714A 05°03.6'N 73°47.2'E 2,038.3 19 to 24 Equatorial Indian Ocean
ODP 588C 26°06.7'S 161°13.6'E 1,533 1to17 Tasman Sea

GSSP Lemme 44°39.32'N 8°50.11'E N.A. N.A. Northern Italy

Miocene boundary based on planktonic foraminiferal
distributions and abundances in deep-sea drilling and land
sequences (Spezzaferri and Premoli Silva, 1991; Spezzaferri,
1994, 1995). The locations where the new species was found
are listed in Table 1. In most cases, three samples per core
section were examined. For those sequences characterized
by the most carbonate dissolution or highest sedimentation
rates, one or two samples per core section were investigated.
Samples were prepared using the standard techniques for
foraminiferal analyses (Spezzaferri, 1994).

Stable-isotope analysis was performed at Cardiff Uni-
versity on a MAT252 gas-source mass spectrometer with an
automated KIEL carbonate preparation unit. Stable
isotope results were calibrated to the PeeDee Belemnite
(PDB) scale by the international standard NBS19, and
analytical precision was =0.05%o and =0.02%o for 3'*O and
d"C, respectively.

SYSTEMATIC PALEONTOLOGY

Catapsydrax indianus n. sp.
Pl 1, Figs. la-3c

1979 Catapsydrax dissimilis subsp. 1, Molina, p. 289, Pl. 25, figs. 3A—

D.
1990 Globorotaloides sp. 2, Premoli Silva and Spezzaferri, Pl. 3, figs.

Ta—c.
1994 Catapsydrax sp. 1, Spezzaferri, Pl. 34, figs. 4a-b.

Holotype specimen. Plate 1, Figures la—c.

Derivation of the name. From the Indian Ocean, where it
is very abundant.

Type level. Ocean Drilling Program (ODP) Sample 115-
709B-21-6, 78-80 cm.

Type section. ODP Hole 115-709B, Mascarene Plateau,
water depth 3,040.8 m, coordinates 03°54.9'S, 60°33.1'E.

Sediment lithology. Nannofossil ooze.

Repository. Natural History Museum of Basel, Switzer-
land, Ref. C9820. The paratypes are also stored in Basel.

Diagnosis. The size of this species ranges from medium to
large (>250 um); however, large specimens are generally
more abundant. It displays a globigeriniform coiling mode
with a moderately low trochospire consisting of about three
whorls. The profile is subcircular and lobate with a rounded
peripheral margin. Four subspherical chambers gradually
increasing in size as added are present in the last whorl. The
sutures are depressed and radial on both sides. The
umbilicus is moderately deep and covered by a bulla in

adult specimens. The primary aperture is a small and
semicircular low umbilical arch, visible only when the bulla
is broken or missing. Five accessory apertures, four opening
over the sutures and one opening over the central part of
the antepenultimate chamber, characterize this species. The
size of the accessory apertural opening over the antepen-
ultimate chamber varies in size from very small to wide, as
in Plate 1, Figures 3a-b, or very irregular, as in Plate 1,
Figure 2. The wall texture is strongly cancellate, with
hexagonal pores located in deep pore pits. Although spines
have not been observed in the studied specimens, Olsson
and others (2007) regarded the genus Catapsydrax as
probably spinose. When strong recrystallization overprints
the original cancellate pattern, the wall texture shows
euhedral crystals and inward growth of crystals replacing
the earlier microgranular wall. Generally, the bulla is less
coarsely cancellate than the rest of the test.

Remarks. This species differs from Catapsydrax dissim-
ilis, Catapsydrax ciperoensis, and Catapsydrax unicavus in
having five infralaminal accessory apertures instead of two,
three to four, or one, respectively. It differs from C.
unicavus by its more lobate profile.

Distribution. Tt ranges from the lower third of Zone P22
of Blow (1979), which corresponds to Zone O6 of Berggren
and Pearson (2005, 2007), to Zone N5 of Blow (1979).

BIOSTRATIGRAPHY

Figure 1 shows the occurrence of Catapsydrax indianus
plotted against (1) the evolutionary stages of Paraglobo-
rotalia kugleri as in Spezzaferri (1991, 1994), (2) the
diversification level of the genus Globigerinoides as in
Spezzaferri (1994), and (3) the FOs of Globorotalia
incognita and Globigerinoides altiaperturus in Hole 516 F.

In Hole 516F, these species’ FOs are at 21.6 Ma and
20.5 Ma, respectively (Berggren and others, 1995). The FO
of C. indianus occurs between the FO of Paragloborotalia
pseudokugleri (25.9 Ma) and the FO of P. pseudokugleri—P.
kugleri transition forms (Appendix 1) in the sediments from
the Global Stratotype Sction and Point (GSSP) Lemme
section (northern Italy), at Deep Sea Drilling Project
(DSDP) Hole 151 (Gulf of Mexico), ODP Hole 667A
(equatorial Atlantic), DSDP Holes 363 and 360 (eastern
South Atlantic Ocean), and ODP Holes 709C, 709B, and
714A (Indian Ocean). At DSDP Hole 17A and ODP Hole
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PLATE 1

Holotype and paratypes of Catapsydrax indianus. 1a—c Catapsydrax indianus Spezzaferri and Pearson, holotype, ODP Sample 115-709B-21-6, 78—
80 cm: 1a spiral view, 1b side view, 1¢ umbilical view. 2a—c Catapsydrax indianus Spezzaferri and Pearson, paratype, ODP Samplel15-709B-21-6, 78—
80 cm: 2a spiral view, 2b side view, 2¢ umbilical view. 3a—c Catapsydrax indianus Spezzaferri and Pearson, paratype, ODP Samplel15-709B-21-6, 78—
80 cm: 3a spiral view, 3b side view, 3¢ umbilical view.
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ODP Sample 155-709B-21X-6, 78-80 cm
Mascarene Plateau

§"C (vpdb)

=1.0
P. kugleri
-0.5
P. pseudokugleri
0.0 P. siakensis
0.5

"G." venezuelana

C. unicavus #

C. dissimilis dissimilis *

C. dissimilis ciperoensis
C. indianus

8"°0 (vpdb)
&

1.5
2.0
25 % O. umbonatus
3.0 ' | | |
0.0 0.5 1.0 1.5 2.0 2.5

FIGURE 2. Oxygen- and carbon-isotope cross-plot of planktonic foraminifers and Oridorsalis umbonatus from ODP Sample 115-709B-21-6, 78—

80 cm. vpdb = Vienna PeeDee Belemnite.

588 C, C. indianus first occurs between the FO of the P.
pseudokugleri—P. kugleri transition and the FO of P. kugleri
(23.8 Ma). At DSDP Holes 516F and 526A, it first occurs
between the FO of P. kugleri and the diversification level of
the Globigerinoides. The LO of C. indianus is at the top of
Zone N4b (21.5 Ma) at the GSSP Lemme section, DSDP
Holes 17A, 516F, and 363, and ODP Holes 714B and 588C.
It is at the top of Zone N4a at DSDP Hole 360 and within
Zone N4a at DSDP Hole 526A.

MULTI-SPECIES ISOTOPE ANALYSES

Multi-species carbon- and oxygen-isotope analyses were
performed on the eight planktonic species listed in Table 2
and on the benthic foraminifer Oridorsalis umbonatus in
order to determine the likely habitat of the new species
relative to other common species in the same assemblage.
Figure 2 shows a 30 versus 8"C plot of those eight
planktonic foraminifers from a single sediment sample

(ODP Sample 115-709B-21X-6, 78-80 cm). Among the
planktonic foraminifera, Catapsydrax dissimilis, C. ciper-
oensis, C. indianus, and C. unicavus are the most positive
with respect to 3'*0, most negative with respect to 8'*C, and
the closest to the values of O. umbonatus. The species
showing values most negative with respect to 6'*0O and most
positive with respect to 8'*C are P. kugleri, P. pseudokugleri,
and Paragloborotalia siakensis. Globoquadrina venezuelana
has carbon and oxygen isotopic values intermediate
between these two groups.

DISCUSSION
BIOSTRATIGRAPHY

In the identification of the Oligocene-Miocene transition,
standard bioevents (first and last occurrences [FO and LO]
of the marker species) have often been associated with
second-order bioevents (e.g., Spezzaferri, 1994; Steininger
and others, 1997). For example, the diversification level of
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TABLE 2. Oxygen- and carbon-isotope data used in the cross-plot for
the multi-species investigation. vpdb = Vienna PeeDee Belemnite.

Species 8"C (vpdb, %o) 30 (vpdb, %o)

P. kugleri 2.065 —0.3195
P. pseudokugleri 2.169 —0.429
P. siakensis 1.82 —0.041

G. venezuelana 1.67 0.759
C. ciperoensis 1.549 1.153
C. dissimilis 1.437 1.326
C. unicavus 1.497 1.13

C. indianus 1.536 1.169
O. umbonatus 0.259 2.385

the genus Globigerinoides worldwide falls within the upper
two-thirds of Zone N4, an interval delimited by the FO and
LO of Paragloborotalia kugleri (Spezzaferri, 1994). The
evolutionary stages of this latter species have been
summarized in Spezzaferri (1991) from the first small and
simple ancestral forms to the more evolved and complex
morphotypes occurring at the end of its range.

By comparing these second-order bioevents with the FO
and LO of Catapsydrax indianus, we observe that the FO of
this new species occurs between the FOs of Paragloborotalia
pseudokugleri and the P. pseudokugleri—P. kugleri transi-
tional morphotype in seven out of the eleven holes where
the species has been observed. Its LO occurs approximately
in the same position in six holes with respect to the
evolutionary stages of the P. kugleri group and the
diversification level of Globigerinoides (Fig. 1). In summary,
the distribution of this species spans an interval of
approximately 5 million years, from just above the FO of
P. pseudokugleri (25.9 Ma) in Biochron P22 to the FO of G.
altiaperturus (20.5 Ma) across the late Oligocene/early
Miocene boundary.

Reasons for the discrepancy in the position of its FO and
LO in some holes or regions might include reworking and
winnowing; sampling resolution, availability, and/or faunal
preservation; or paleoceanographic setting. These possibil-
ities are summarized as follows.

1. Reworking and winnowing. These physical processes
may affect the relative distribution of planktonic
foraminifers. For example, winnowing has displaced
and redeposited to various degrees the sediments from
Hole 526A (Moore and others, 1984).

2. Sampling resolution, availability, andlor faunal preser-
vation. At Hole 17A, the faunal preservation is
generally very poor, and many tests show significant
dissolution effects. Holes 360 and 363 have not been
continuously cored through Zone N4b (Bolli and
others, 1978). Hiatuses truncate the sedimentary
sequence for most of Zone N4 at Hole 714A, the upper
part of Zone P22, and the base of Zone N4a at Holes
151 and 516F.

3. Paleoceanographic setting. This species is typical of
cold-water, but it has not been documented from
upwelling regions (Spezzaferri, 1995). Its absence in
sediments from Holes 667A and 516F is probably
related to the upwelling regime in the equatorial and
western South Atlantic Ocean, respectively.

STABLE ISOTOPE PALEOBIOLOGY

The depth habitat of planktonic foraminifera can be
inferred from their oxygen-isotope values (see, for example,
Emiliani, 1954; Berger and others, 1978; Douglas and
Savin, 1978; Poore and Matthews, 1984; Pearson and
others, 1993, 1997). In particular, the species with the
lightest 8'%0 values probably calcified in the warmest water
(i.e., the surface mixed layer) with respect to the others.
Species with heavier 80O values probably calcified their
tests in deeper, cooler waters below the thermocline. The
d"*C values may also partly reflect the different preferred
depths of calcification of planktonic foraminiferal species.
The 3"C value of dissolved inorganic carbon tends to
decrease rapidly with depth below the euphotic zone, where
the remineralization of isotopically light organic matter
occurs in the absence of photosynthesis (Kroopnick, 1985;
Pearson and Wade, in press).

Although recrystallization affects to varying degrees the
tests of the planktonic foraminifers in the samples from the
Indian Ocean (e.g., ODP Sample 115-709B-21X-6, 78—
80 cm), the relative ordering of the different species in the
oxygen- and carbon-isotope cross-plot (Fig. 2) is generally
robust for inferring life habitats. Figure 2 compares these
results with the findings of similar studies of Oligocene
planktonic foraminifera (e.g., Douglas and Savin, 1978;
Poore and Matthews, 1984; Corfield and Cartlidge, 1991;
Pearson and others, 1997).

Overall, the differences in the life habitat among species
as inferred from the oxygen- and carbon-isotope cross-plot
(Fig. 2) are much reduced compared to the well-preserved
sample from Trinidad studied by Pearson and Wade (in
press) but similar to the assemblage from ODP Site 926
(Ceara Rise) studied by Pearson and others (1997). This is
attributed to diagenetic recrystallization, which has reduced
but not obliterated the interspecific differences here and at
the Ceara Rise, allowing us to infer relative depth habitats
(see Pearson and others, 2001, for discussion of this
diagenetic effect.)

Paragloborotalia pseudokugleri and P. kugleri have the
most negative 8'%0 values, suggesting that they inhabited
the surface mixed layer. Paragloborotalia siakensis has
slightly less negative 880 values (as it does, for example, in
Trinidad; Pearson and Wade, in press), suggesting that it
may have calcified a greater proportion of its shell calcite at
depth. “Globoquadrina” venezuelana was a deep-dwelling,
non-symbiotic form. The deepest-dwelling of all the
planktonic foraminifera was the genus Catapsydrax, which
has relatively positive 86'®0 and negative §"C values.
Catapsydrax indianus has isotopic ratios similar to those
of the other species in this genus, suggesting their similar
habitat.

CONCLUSIONS

A new species of planktonic foraminifer, Catapsydrax
indianus, which occurs across the late Oligocene—early
Miocene transition, is described. Its distribution spans an
interval of approximately 5 million years across the late
Oligocene-early Miocene transition from just above the FO
of Paragloborotalia pseudokugleri (25.9 Ma) in Biochron
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P22 (Zone O6) to the FO of Globigerinoides altiaperturus
(20.5 Ma). Therefore, its FO and LO may serve as second-
order bioevents for identifying this interval.

Multispecies isotope data from ODP Sample 115-709B-
21-6, 78-80 cm suggest that Catapsydrax indianus has
isotopic ratios similar to those of the other species of the
genus Catapsydrax, which indicates a similar deep-dwelling
habitat.
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is not a formal taxon, a short description is presented here following
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two-and-a-half whorls. Six and a half chambers in the last whorl
increase slowly in size. The sutures are slightly arched to arched on the
spiral side and straight on the umbilical side. The peripheral margin is
rounded to slightly subacute. It has a low arched and umbilical to
extraumbilical aperture, sometimes bordered by a thin lip and a narrow
umbilicus. For comparison, Paragloborotalia kugleri is slightly to
strongly biconvex, with six to eight subovate chambers in the last
whorl. Sutures are slightly depressed and very arched on the spiral side
and slightly arched on the umbilical side. Its peripheral margin is
subacute.



